US 8,156,468 B2

1
SYSTEM AND METHOD FOR CREATING
INTELLIGENT SIMULATION OBJECTS
USING GRAPHICAL PROCESS
DESCRIPTIONS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation-in-part of application
Ser. No. 12/284,662, filed Sep. 24, 2008, incorporated by
reference in its entirety.

FIELD OF THE INVENTION

This invention relates to the field of computer modeling.
More particularly, the invention relates to systems and meth-
ods for developing simulation.

BACKGROUND OF THE INVENTION

Over the 50 year history of discrete event simulation, the
growth in applications has been facilitated by some key
advances in modeling that have simplified the process of
building, running, analyzing and viewing models. Three
important advances have been: (i) the modeling paradigm
shift from an event to a process orientation; (ii) the shift from
programming to graphical modeling; and (iii) the emergence
of'2D/3D animation for analyzing and viewing model execu-
tion. These key advances were made 25 years ago and pro-
vided the foundation for the set of modeling tools in wide use
today.

The past 25 years has been a period of evolutionary
improvements with few significant advances in the core
approach to modeling. The currently available tools are
mostly refined versions of what existed 25 years ago.

Many popular programming languages such as C++, C#,
and Java are built around the basic principles of object ori-
ented programming (OOP). In this programming, paradigm
software is constructed as a collection of cooperating objects
that are instantiated from classes. When instantiating an
object into a model, one should start by specifying the prop-
erties governing the behavior of that object. For example, the
properties for a machine might include its setup, processing,
and teardown time, along with a bill of materials and the
operator(s) required during setup. The creator of an object
decides on the number and the meaning of its properties.

The typical instantiation of classes uses the core principles
of abstraction, encapsulation, polymorphism, inheritance,
and composition.

Abstraction can be summarized as focusing on the essen-
tial. The basic principle is to make the classes structure as
simple as possible.

Encapsulation specifies that only the object can change its
state. Encapsulation seals the implementation of the object
class from the outside world.

Polymorphism provides a consistent method for messages
to trigger object actions. Each object class decides how to
respond to a specific message.

Inheritance allows new object classes to be derived from
existing object classes, sometimes referred to as the “is-a”
relationship. This is also referred to as sub-classing since a
more specialized class of an object is being created. Sub-
classing typically allows the object behavior to be extended
with new logic, and also modified by overriding some of the
existing logic.

10

15

20

25

30

35

40

45

50

55

60

65

2

Composition allows new object classes to be built by com-
bining existing object classes, sometimes referred to as the
“has-a” relationship. Objects become building blocks for cre-
ating higher level objects.

Within this framework, objects are implemented by coding
one or more methods that change the state of an object.
Derived objects may override (i.e., replace) methods that are
inherited from its parent class, or extend the behavior by
adding additional methods.

The roots of these ideas date back to the early 1960’s with
the Simula 67 simulation modeling tool. That tool was cre-
ated by Kristen Nygaard and Ole-Johan Dahl (1962) of the
Norwegian Computing Center in Oslo to model the behavior
of ships. Nygaard and Dahl introduced the basic concepts of
creating classes of objects that own their data and behavior,
and could be instantiated into other objects. This was the birth
of modern object-oriented programming. Because Simula 67
was a programming language and not a graphical modeler, it
never developed into a widely used tool.

Inthe early days of discrete event simulation, the dominant
modeling paradigm was the event orientation implemented
by tools such as Simscript (Markowitz et al., 1962) and GASP
(Pritsker, 1967). In that paradigm, the “system” is viewed as
a series of instantaneous events that change the state of the
system. The modeler defines the events in the system and
models the state changes that take place when those events
occur. This approach to modeling, while very flexible and
efficient, is also a relatively abstract representation of the
system. As a result, many people found modeling with an
event orientation to be difficult.

In the 1980’s, the process orientation displaced the event
orientation as the dominant approach to discrete event simu-
lation. In the process view, one describes the movement of
passive entities through the system as a process flow. The
process flow is described by a series of process steps (e.g.
seize, delay, release) that model the state changes taking place
in the system. This approach dates back to the 1960’s, with
the introduction of GPSS (Gordon, 1960), and provides a
more natural way to describe the system. Because of many
practical issues with the original GPSS (e.g. an integer clock
and slow execution), it did not become the dominant approach
until improved versions of GPSS (Henriksen, 1976) along
with newer process languages such as SLAM (Pegden/
Pritsker, 1979) and SIMAN (Pegden, 1982) became widely
used in the 1980’s.

During the 1980’s and 90’s, graphical modeling and ani-
mation emerged as key features in simulation modeling tools.
Graphical model building simplified the process of building
process models while graphical animation dramatically
improved the viewing and validation of simulation results.
The introduction of Microsoft Windows made it possible to
build improved graphical user interfaces and a number of new
graphically based tools emerged (e.g. ProModel and Wit-
ness).

Another conceptual advance that occurred during this time
was the introduction of hierarchical process modeling tools
that supported the notion of domain specific, process librar-
ies. The basic concept here is to allow users to create new
process steps by combining existing process steps. The
widely used Arena modeling system of Pegden/Davis (1992)
is a good example of this capability.

Since the wide spread shift to a graphics-based process
orientation, there have been refinements and improvements in
the tools but no real advances in the underlying framework.
The vast majority of discrete event models continue to be built
using the same process orientation that has been widely used
for the past 25 years.



